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Abstract
Background: This article describes classical and Bayesian interval estimation of genetic
susceptibility based on random samples with pre-specified numbers of unrelated cases and
controls.

Results: Frequencies of genotypes in cases and controls can be estimated directly from
retrospective case-control data. On the other hand, genetic susceptibility defined as the expected
proportion of cases among individuals with a particular genotype depends on the population
proportion of cases (prevalence). Given this design, prevalence is an external parameter and hence
the susceptibility cannot be estimated based on only the observed data. Interval estimation of
susceptibility that can incorporate uncertainty in prevalence values is explored from both classical
and Bayesian perspective. Similarity between classical and Bayesian interval estimates in terms of
frequentist coverage probabilities for this problem allows an appealing interpretation of classical
intervals as bounds for genetic susceptibility. In addition, it is observed that both the asymptotic
classical and Bayesian interval estimates have comparable average length. These interval estimates
serve as a very good approximation to the "exact" (finite sample) Bayesian interval estimates.
Extension from genotypic to allelic susceptibility intervals shows dependency on phenotype-
induced deviations from Hardy-Weinberg equilibrium.

Conclusions: The suggested classical and Bayesian interval estimates appear to perform
reasonably well. Generally, the use of exact Bayesian interval estimation method is recommended
for genetic susceptibility, however the asymptotic classical and approximate Bayesian methods are
adequate for sample sizes of at least 50 cases and controls.

Background
Association mapping of complex phenotypes in case-con-
trol samples involves analysis of tables of genotype/allele
counts collected at a large number of genetic loci. Relating
single-locus genotype and allele frequencies to the out-
come is a basic analysis step even if complex interactions
among loci are expected. Indeed, biologically realistic
models that involve multiple interacting polymorphisms

may induce considerable "marginal effects" associated
with individual loci. Often the numbers of cases and con-
trols are fixed in advance by the experimental design, and
the multiple markers are typed. Then case/control propor-
tions remain the same for all markers, whereas genotype
and allele numbers in cases and controls are subject to the
random sampling variation. The reverse is however of
greater interest: what is the genetic susceptibility, or the
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probability that a random individual will have a particu-
lar outcome given that a particular genotype or an allele is
observed at a locus? Unlike the odds ratio, this parameter
is not invariant with respect to the prospective vs. retro-
spective sampling schemes. Therefore, the point estimate
of this probability can only be obtained from genotype
counts in cases and controls by assuming a particular
value of the population prevalence. Another issue is the
degree of uncertainty in the estimate, which is being inves-
tigated in this article via interval estimation. Classical, or
"frequentist" confidence interval (CI) is a well established
framework for interval estimation. Such an interval is a
random quantity, and the probability statements are
made about proportions of times a random CI covers the
fixed population parameter. A more relevant question is
often about the variability, or uncertainty associated with
the estimate of the population value. In other words, we
would like to be able to make statements about the lower
and upper bounds for genetic susceptibility, thus inter-
preting the interval as fixed, and the susceptibility as ran-
dom, where randomness is due to the limited amount of
data about the parameter. Bayesian (e.g. "credible") inter-
vals provide such interpretation, but sometimes are criti-
cized for subjectivity associated with the choice of prior
distributions. It is not generally the case that classical and
Bayesian intervals should correspond to each other, how-
ever such correspondence is possible for certain combina-
tions of the likelihood and prior distributions. For
example, P. Altham [1] showed that when testing for the
difference of two binomial proportions, frequentist
Fisher's exact test can be viewed as a Bayesian test when
assuming binomial likelihoods and Beta priors for the dis-
tributions of proportions. Thus, although no priors are
explicitly assumed by Fisher's test, one can recover prior
distributions that are indirectly implied by the test. Datta
and Mukerjee [2] provide an extensive review of such
matching probability problems and show that in most
parametric cases suitable priors can be constructed that
would match the Bayesian credible intervals of a given
size to that of a frequentist confidence interval up to sec-
ond order. As we show here, under a beta-binomial model
there is a close connection between the two types of inter-
vals for genetic susceptibility, which allows flexibility in
the interpretation.

Results
Susceptibility intervals
Association studies are often "retrospective" in the sense
that samples of cases and controls are determined by
recruitment ("fixed"), and the genetic variants, e.g. geno-

types AA and  (not-AA) at a genetic marker, are ran-
dom. Estimated genotype frequencies among cases or

controls, e.g.  are obtained directly from the

following table as .

Assume AA is the risk genotype. If the samples were ran-
dom with respect to both rows and columns, then the esti-
mated susceptibility (penetrance, or the positive

predictive value), φ = Pr(  | AA), would simply be esti-
mated by x/(x + y). Because the rows are fixed, we need the
population prevalence, w. Then,

where w = Pr( ), p = Pr(AA | ), and q = Pr(AA | ).
If the rows are assumed to arise independently from bino-
mial distributions, the maximum likelihood estimates of

the parameters p and q are given by  = x/n, and  = y/m,
respectively. The population prevalence, w, has to be esti-
mated externally, rather than from the data provided by

retrospective case-control samples. Let  denote such an
estimate of w. Hence, a point estimate of φ can be

obtained as .

The expression  given above involves the ratio of ran-
dom variables, y/x, and hence obtaining the exact sam-
pling variance is problematic. Approximate methods have
been suggested for the ratio of binomial variables [3,4].
An approximate variance using the logit transformation
allows us to obtain a simple expression as well as to sepa-
rate the terms for p, q and w in the variance expression. To
see this, define
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ŵ

ˆ ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

φ = + −







 = + −





− −
1

1
1

1
1 1

w

w

q

p

w

w

ny

mx

φ̂

η
φ
φ

=
−

=
−

+ −

ln

ln ln ln ( )

1

1
2

w

w
p q
Page 2 of 11
(page number not for citation purposes)



BMC Genetics 2004, 5 http://www.biomedcentral.com/1471-2156/5/9
Classical interval
The first-order Taylor series approximation gives the vari-

ance of  as

where the first two terms refer to the variance of the rela-
tive risk of AA on the log scale. Pepe [5] presented exten-
sive discussion on estimation of similar quantities in the
context of biomedical research. The last term of (3) can be
further approximated as

and requires the knowledge of  which must come from
an external source. When the range (r = wu - wl) of w is

known, we may define , the

range on the logit scale. Then  can be approx-

imated by (r*/6)2, since three standard deviations from
the mean cover over 99% of the (centered) normal distri-

bution, f (x, 0, σ), i.e. , where f(x,

0, σ) denotes the probability density function of a Normal
distribution with mean 0 and standard deviation σ.
Henceforth, unless otherwise mentioned we use

. Browne [6] discussed this issue

and similar approaches of relating the range to the stand-
ard deviation.

The CI for susceptibility is obtained by inverting the end-
points of the asymptotic normal interval for η,

e.g. the upper point  is inverted as

. As we know that , and

, the estimated variance becomes

Approximate Bayesian interval
The variance given by (6) is infinite when the observed
value of either x or y is zero. Before describing a method
of dealing with this, we note that the usual asymptotic var-
iance formula for the log odds ratios, based on the sum of
reciprocals of the 2 × 2 table counts, {n11, n12, n21, n22},
has a similar deficiency, i.e. it results in an infinite vari-
ance when one of the observations is zero. To avoid this
problem, it is common to add 1/2 to each cell. Haldane
[7], Gart and Zweifel [8] justified this on the basis of min-
imizing the bias in the estimation of the logit variance
(also see discussion in [9]). The variance becomes

We propose a similar modification of (6) and justify it by
showing that it is an approximate Bayesian variance esti-
mator. In passing, we note that (7) can also be obtained
by using the same argument as in the derivation of the

approximate posterior variance of  that follows.

When the sampling distribution of genotypes is binomial,
i.e. x|p ~ Bin(p, n) and y|q ~ Bin(q, m) and the prior distri-
butions for p and q are independent Beta(γ 1, β1) and
Beta(γ2, β2) respectively, the posterior distributions of p
and q are independent Beta's with

p | x ~ Beta(x + γ1, n - x + β1)

q | y ~ Beta(y + γ2, m - y + β2)  (8)

The binomial likelihood arises as a consequence of inde-
pendence between genotypes in a random sample.
Although a Beta prior for allele frequencies is sometimes
justified from purely mathematical convenience, it does
provide a sufficiently flexible shape. More importantly,
certain population-genetic models result in Beta, or more
generally Dirichlet distributions for allele frequencies. For
example, population frequencies at mutation-drift equi-
librium follow this distribution [10]. A reasonable
assumption is that a typical value from the susceptibility
distribution is around the prevalence value, which implies
similarity in the prior distributions of p and q, i.e. γ1 = γ2,
β1 = β2.

Different parameters would generally assume prior devia-
tion of the typical susceptibility value away from the pop-
ulation prevalence.

Posterior expectations and variances of p and q are respec-
tively given by,
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Using posterior variances for  and , and substi-

tuting posterior expectations for parameter estimates 

and  in (3), we obtain

Again, the approximation (4) is appropriate when 
is available.

When γ1, γ2 → 0 and β1, β2 → 0 (Haldane's prior, see [11])
we are essentially back to (6),

because n/(n + 1) and m/(m + 1) approach one as m and n
increase. Therefore (6) is also justified from the Bayesian
point of view.

When γ1 = γ2 = β1 = β2 = 1/2 (Jeffreys' prior, [11]),

Welch and Peers [12] established that in general Jeffreys'
priors provide mathematical correspondence between fre-
quentist and Bayesian intervals. In particular, these
authors proved that under some regularity conditions
(which are trivially satisfied for this problem) Jeffreys'
prior is the unique prior for a parameter for which a Baye-

sian credible interval and a frequentist confidence interval
match up to the second order.

The asymptotic normal credible interval based on

 can be obtained as:

where , and the endpoints, l

and u, are inverted as  and , respectively to

produce an approximate (1 - α)% interval estimate of φ.

Exact Bayesian interval
It is also possible to obtain an "exact" Bayesian credible
interval using Monte Carlo samples generated from the
posterior distribution of φ. The sample is obtained by
repeatedly drawing p and q from their posterior distribu-
tions given by (8) and calculating φ via (1) for each reali-
zation of p, q. This generates an empirical posterior
distribution for φ and a (1 - α)% interval is given by (α/2),
(1 - α/2) quantiles of this distribution. Values w can be
drawn uniformly from the range of its possible values. A
bell-shaped Beta distribution can also be assumed with
parameters based on the reported range, wl - wu, as
described in Methods, section 3. An algorithm is as
follows:

1. Generate p(i) ~ Beta(x + γ1, n - x + β1), i = 1,.., B.

2. Generate q(i) ~ Beta(y + γ2, m - y + β2), i = 1,.., B.

3. Generate w(i) ~ Uniform (wl, wu), i = 1,.., B.

4. Compute , i = 1,..., B.

Then the α/2 and 1 - α/2 quantiles of the generated empir-
ical posterior distribution of φ provide the (1 - α)% credi-
ble interval for the susceptibility. This algorithm is easily
implemented in R, a language and environment for statis-
tical computing and graphics available as Free Software at
http://www.r-project.org/. For example, setting γ1 = γ2 = β1
= β2 = 0.5, the entire code using 100,000 samples, 95%
credible interval, and w distributed uniformly between
0.04 and 0.06 is

p <- rbeta(100000, x + 0.5, n - x + 0.5)

q <- rbeta(100000, y + 0.5, m - y + 0.5)
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w <- runif(100000, 0.04, 0.06)

phi <- w*p / (w*p + (1 - w)*q)

phiL <- quantile(phi, prob = 0.025)

phiU <- quantile(phi, prob = 0.975)

cat(c("Interval estimate", phiL, phiU), fill = T)

Common beta priors on p and q (γ1 = γ2, β1 = β2) may be
interpreted as vague with respect to the prior distribution
for φ. On the logit scale, this distribution is bell-shaped
symmetric, and centered around ln [w/(1 - w)]. Its vari-
ance decreases as the common (γ, β) parameters for p and
q increase. For large values of γ, β this variance can be
obtained by the Taylor series approximation, 2β/[γ (γ + β
+ 1)]. A mixture of beta distributions can take an arbitrary
shape with the great advantage that the resulting distribu-
tion is bounded between the lower and upper values –
which is the case for p, q, and φ parameters. In Methods
(section 1) we outline the sampling scheme for the
mixture.

Interval estimation of allele or haplotype susceptibilities
Methods described so far could be applied without modi-
fications to the estimation of allele or haplotype suscepti-
bilities when the probability of obtaining a sample of
alleles follows the multinomial likelihood. However,
such usage would require the assumption of independ-
ence between alleles. This can be justified under the
assumptions of Hardy-Weinberg equilibrium (HWE) in
the population, as well as the multiplicative effects of hap-
lotype susceptibilities [13]. When these assumptions are
reasonable, the intervals are obtained in the same way as
described above using counts of alleles/haplotypes
instead of genotypes. Otherwise the variance of allele fre-

quencies,  is no longer binomial (x,
y are now the counts of alleles A in cases and controls
respectively, and n, m are the total numbers of alleles). It
is instead given by

where Dp, Dq are the Hardy-Weinberg disequilibrium
(HWD) coefficients [14], defined as the deviation of the
observed frequencies of AA from the expected under ran-
dom union of alleles. For example,

, and is estimated by using the

observed frequencies, . These vari-

ances are most easily derived by re-coding the genotypes

(AA, , ) as G = (-1, 0, 1), which keeps track of the
number of alleles A minus one in a corresponding geno-
type, and taking expectations in V(G) = E(G2) - (E(G))2

(see Appendix 1 in [15], or two alternative derivations in
[14]).

These coefficients (quantifying HWD among cases or con-
trols) may be non-zero even if the population is in HWE
[13]. Then the variance (6) becomes

with two new additional terms to account for HWD. Con-

sider the effect of . If  is negative, the resulting var-

iance becomes smaller. If it is positive, the maximum

possible value of [14] is

The maximum values for the terms with HWD in (15) are

Therefore, when  or  reach their maximum possible

values, the inflation of the corresponding part of the vari-
ance is twice the value assuming the equilibrium. To set
up an exact Bayesian interval for allelic/haplotypic suscep-
tibility we may start with distributions for genotypes/
diplotypes instead of that for alleles/haplotypes. Random
samples of genotypes for cases, {n1j}, and for controls,
{n2j}, follow the multinomial distribution. A conjugate
prior distribution is Dirichlet(γij), so the posterior geno-
type frequencies Pij are sampled from Dirichlet(γij + nij)
distribution. Posterior allele/haplotype frequencies are

given as  and the method proceeds as

above. Jeffrey's prior is obtained when all γij are 1/2.

Coverage probabilities
The intervals using (6, 10) and the exact Bayesian interval
have good frequentist coverage probabilities. To illustrate
this, we simulated population values of p and q as p ~
Beta(1, 1) and q ~ Beta(1, 1) for each of 10,000 simulation
runs. We used γ = β = 1/2 for the interval calculations and
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assumed that w = 0.5 or w = 0.04 is known and fixed. To
compare intervals based on (6) and (12) we only consid-
ered samples with x, y > 0, obtained as x ~ Bin(p, n), y ~
Bin(q, m). In addition, we considered binomial samples
with at least one of x, y equal to zero to check coverage
properties of (12). We used m = n = 10,50,100,500 and
90% coverage intervals. Frequentist intervals cannot be
used with zero counts of n11 or n21, which may be prob-
lematic only for sample sizes of 10 (17% of the samples).
In this small percentage of cases, we resort to adding 1/2
to the counts as in (10). Agresti [9] considered a similar
approach for calculation of CIs for odds ratios, that is to
use Gart's formula (7) only when zero counts are encoun-
tered. Results for coverage probabilities are shown in
Table 1. Note that the coverage of all three methods is
around the nominal 90% for all sample sizes and both
values of population prevalence. Results in Table 1 are
averages across the distribution of p and q, however simi-

lar coverage results are obtained when the population val-
ues of p, q are set to specific fixed values. We considered
the following fixed sets of parameters:

1. p = 0.96, q = 0.06, w = 0.04. This set results (equation 1)
in the population susceptibility value of φ = 0.4 (ten-fold
increase from the population prevalence value).

2. p = 0.9, q = 0.15, w = 0.04. This set results in the popu-
lation susceptibility value of φ = 0.2.

3. p = 0.8, q = 0.2, w = 0.5. This set results in the popula-
tion susceptibility value of φ = 0.8.

The coverage probabilities for all three methods were
found to be sufficiently close to the nominal values of
90% and 95% for sample sizes of 50 or larger (Table 2).

Table 1: Coverage probabilities for nominal 90% intervals based on 10,000 simulations.

Sample size 10 50 100 500

Prevalence
Asymptotic Frequentist

0.04 0.921 0.910 0.908 0.898
0.50 0.918 0.906 0.906 0.898

Asymptotic Bayesian
0.04 0.902 0.903 0.904 0.897
0.50 0.896 0.898 0.901 0.898

Exact Bayesian
0.04 0.909 0.902 0.902 0.896
0.50 0.907 0.895 0.901 0.895

Table 2: Coverage probabilities for nominal (90%/95%) intervals based on 10,000 simulations, based on three population settings of (p, 
q, w). Setting 1: p = 0.96, q = 0.06, w = 0.04. Setting 2: p = 0.9, q = 0.15, w = 0.04. Setting 3: p = 0.8, q = 0.2, w = 0.5.

Sample size 10 50 100 500

(p, q, w) settings
Asymptotic Frequentist

1 0.888/0.951 0.919/0.962 0.916/0.960 0.896/0.948
2 0.942/0.883 0.906/0.962 0.909/0.954 0.896/0.953
3 0.909/0.954 0.908/0.954 0.900/0.947 0.899/0.951

Asymptotic Bayesian
1 0.888/0.883 0.918/0.920 0.907/0.951 0.901/0.948
2 0.866/0.920 0.900/0.950 0.904/0.946 0.894/0.951
3 0.879/0.907 0.901/0.950 0.895/0.944 0.899/0.948

Exact Bayesian
1 0.911/0.979 0.890/0.922 0.894/0.954 0.897/0.946
2 0.945/0.967 0.900/0.950 0.908/0.950 0.896/0.951
3 0.865/0.954 0.900/0.948 0.896/0.946 0.895/0.950
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Table 3 shows the mean length and the standard deviation
of the interval length across 10,000 simulations used to
produce Table 1. This standard deviation reflects esti-
mated variability of the interval length and decreases with
sample size, but not with the number of simulations. The
corresponding standard error could be obtained by divid-
ing the standard deviation by the square root of the
number of simulations. Table 4 shows the same results
among the intervals that include the population value of
w. Numbers for each parameter combination that contrast
three intervals in a given table are obtained using the same
data sets. For example, once a sample of size n is obtained
for a specific value of w, all three intervals are calculated
using this sample. Therefore, comparisons between meth-
ods are quite precise given the number of simulations.
Again, the mean and standard deviation are similar
among three methods. Nevertheless, the classical CI is
never the shortest of the three intervals for the parameter
values that we have considered and typically it has the
highest length variability. Using data summarized in
Table 3, the exact interval was found to have the smallest
length 5 times out of 8 considered parameter combina-
tions and has the lowest variability 5 times out of 8. These
numbers are respectively 5 out of 8 and 4 out of 8 for data

used to construct Table 4. There is some dependency
between results from Tables 3 and 4 due to the same com-
bination of parameters.

We do not present numerical results based on mis-specifi-
cation of w or the uncertainty in it, because the behavior
of intervals is clear. When w is mis-specified, the intervals
actively worsen as the sample size increases (in the sense
of the probability of including the population parameter),
since they shrink around the wrong value. On the other
hand, the uncertainty in w widens the interval length. As
the sample size becomes large, the minimum length
simply reflects the variability in w. We conducted simula-
tion experiments to illustrate this point, using the popula-
tion value of w = 0.045 assuming the range 0.03 to 0.06 is
reported. For the exact Bayesian interval, the distribution
of w was modelled as Beta(ψ1 = 77.31, ψ2 = 1640.69) with
parameters estimated by (29). These values are taken to
reflect the reported prevalence of the hypersensitivity reac-
tion to an antiretroviral drug abacavir, for which genetic
predisposition has been described [16]. Table 5 reports
results for the coverage probabilities and the interval
length of 10% intervals, assuming p = 0.8 and q = 0.2,
which corresponds to the population susceptibility value

Table 3: Average length (standard deviation) of the intervals based on 10,000 simulations.

Sample size 10 50 100 500

Prevalence
Asymptotic Frequentist

0.04 0.161(0.220) 0.081(0.151) 0.060(0.121) 0.026(0.057)
0.50 0.361(0.156) 0.168(0.090) 0.117(0.062) 0.052(0.030)

Asymptotic Bayesian
0.04 0.143(0.207) 0.075(0.139) 0.057(0.114) 0.025(0.055)
0.50 0.341(0.146) 0.166(0.086) 0.116(0.060) 0.052(0.030)

Exact Bayesian
0.04 0.180(0.264) 0.079(0.146) 0.058(0.113) 0.025(0.054)
0.50 0.329(0.152) 0.161(0.085) 0.114(0.059) 0.052(0.029)

Table 4: Average length (standard deviation) of those intervals that contained the true parameter value.

Sample size 10 50 100 500
Prevalence

Asymptotic Frequentist
0.04 0.157(0.215) 0.078(0.147) 0.059(0.117) 0.026(0.056)
0.50 0.364(0.155) 0.168(0.088) 0.119(0.067) 0.052(0.030)

Asymptotic Bayesian
0.04 0.139(0.201) 0.072(0.134) 0.056(0.110) 0.026(0.055)
0.50 0.342(0.144) 0.165(0.084) 0.118(0.065) 0.052(0.030)

Exact Bayesian
0.04 0.176(0.259) 0.077(0.142) 0.057(0.111) 0.025(0.053)
0.50 0.333(0.150) 0.161(0.084) 0.116(0.065) 0.052(0.030)
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of 0.159. The results show that the average length is some-
what increased when the calculation are based on the
range of w, and the interval coverage is above the nominal
value of 90%, because of the increased interval width.

Pharmacogenetic application
Hypersensitivity reaction to the antiretroviral drug
abacavir affects approximately 4.5% of patients. The
hypersensitivity symptoms are varied with fever and rash
among the most common. A small number of fatalities
have also been reported. The exact mechanism of hyper-
sensitivity is not established, but the pattern of symptoms
suggests that it is an immunological reaction, triggered by
specific genetic polymorphisms. Hetherington et al. [16]
studied the association of HLA-B57 haplotype with hyper-
sensitivity. One or two copies of HLA-B57 haplotype were
present in x = 39 of n = 84 individuals with hypersensitiv-
ity (cases) and in y = 4 out of m = 113 controls. The prev-
alence of the hypersensitivity reaction is estimated to be
between 0.03 and 0.06 [16]. The estimate of φ using (1)
and the midrange w (that is equal to 0.045) is 0.382.
Assuming w = 0.045 is fixed (i.e. V(w) = 0), the intervals
are as follows. The frequentist 95% interval is 0.187 -
0.624, the asymptotic Bayesian interval is 0.180 - 0.584,
and the exact Bayesian interval is 0.203 - 0.648. Taking the
range of w into account, the frequentist and Bayesian
asymptotic intervals become wider, 0.183 - 0.631 and
0.175 - 0.591, correspondingly, and the exact Bayesian
interval assuming the uniformity of w on the range (0.03
- 0.06) is 0.186 - 0.658. This interval is estimated from
repeatedly (i = 1,..., 100000) generating p(i) ~ Beta(39 + 1/
2, 84 - 39 + 1/2), q(i) ~ Beta(4 + 1/2, 113 - 4 + 1/2), w(i) ~

Uniform(0.03,0.06), and calculating

. Then the credible interval

was obtained from this (empirical) distribution of φ by
determining its 2.5% and 97.5% quantiles. It is not neces-
sary to assume the uniformity of w. Indeed, it may be
reasonable to assume that the midrange value is more
plausible than the endpoints and a realistic distribution
can be described as bell-shaped. Taking w ~
Beta(57.8572,1227.86) generates a bell-shaped distribu-
tion with the mean at 0.045 and 99% of this distribution
is contained between 0.03 and 0.06 (Methods, section 3).
The resulting interval is somewhat smaller, 0.195 - 0.653.
Results for this example are summarized in Table 6.

Discussion
Asymptotic frequentist and Bayesian intervals for genetic
susceptibility as well as the exact Bayesian interval are
quite similar in properties. Given that the sampling from
the posterior distribution can be done directly, there is no
particular reason to resort to approximations and the
exact Bayesian interval can be recommended. Neverthe-
less, approximations are useful in that they reveal connec-
tions between the confidence and credible intervals as
well as allow for sample size and power calculations as we
outline in Methods, section 2. The mean length and the
interval variability appear somewhat smaller for the
Bayesian intervals. The frequentist coverage of Bayesian
intervals is satisfactory. One may even argue that the oper-
ational usage of CIs is more often Bayesian than it is not,
because the practical issue is ultimately about the confi-

Table 5: Effect of uncertainty in the prevalence, w: the population value is w = 0.045; the assumed range is either 0.03–0.06 (  > 0, 

first three columns), or zero (  = 0, last three columns). AF, AB, EB refer to the asymptotic frequentist, approximate Bayesian, 
and exact Bayesian 10% intervals.

 > 0  = 0

Interval AF AB EB AF AB EB

n = m = 10
Av. Length 0.375 0.308 0.394 0.371 0.303 0.391
Coverage 0.941 0.889 0.868 0.913 0.889 0.868
n = m = 50
Av. Length 0.154 0.144 0.155 0.143 0.134 0.145
Coverage 0.929 0.924 0.920 0.902 0.898 0.895
n = m = 100
Av. Length 0.110 0.107 0.110 0.096 0.093 0.097
Coverage 0.945 0.946 0.939 0.900 0.896 0.900
n = m = 500
Av. Length 0.067 0.067 0.066 0.041 0.041 0.041
Coverage 0.993 0.993 0.992 0.897 0.899 0.900
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dence on the plausible range of parameter values. Alge-
braic relations between classical and Bayesian intervals as
well as similarities in numerical properties allow Bayesian
interpretation for the CIs. On the other hand, Bayesian
intervals for this problem can be described in the classical
sense as random, covering the fixed population parameter
α% of the time in repeated samples.

Caution should be taken when the inference is about
allele or haplotype susceptibilities. When assumption of
population HWE does not hold, or when there are sub-
stantial deviations from multiplicativity, the variance of
susceptibility contains additional terms that account for
population or model-induced deviations from Hardy-
Weinberg equilibrium.

Conclusions
We found that the classical interval for genetic susceptibil-
ity can be considered as an approximate Bayesian interval
under the beta-binomial model. This algebraic similarity
between the proposed classical and approximate Bayesian
intervals allows an appealing Bayesian interpretation of
the usual confidence limits. Simulation studies also con-
firm similarities in coverage probabilities and interval
lengths among asymptotic classical and approximate and
exact Bayesian intervals.

Methods
Posterior sampling using the mixture of beta distributions
We derive explicitly the posterior distribution of θ under
a Binomial sampling using a mixture of Beta priors. As
Beta is a conjugate prior for the binomial likelihood, we
show that mixture of Beta's is also conjugate. To see this,
consider the problem

where p(x| θ) denotes the sampling density of X = x given
θ. Now consider a prior for θ given by a mixture of k beta
distributions Beta(γj, βj) with weights vj, such that

 and vj ≥ 0 for all j. More explicitly, the prior

density π(θ), of θ is given by,

where  denotes

the density of a Beta (γj, βj) distribution and

 denotes the Beta

function. Using Bayes' rule it follows that the posterior
distribution is given by,

where  = γj + x,  = βj + n - x and

Thus it follows that if X | θ ~ Bin(θ, n) and θ ~ vj

Beta(γj, βj) then θ|X = x ~ . It may be

noted that any continuous density on [0,1] can be
approximated by an appropriate mixture of Beta densities
(see [17] for more general results on approximating any
prior using natural conjugate priors). Besides such theo-
retical properties, sampling from the mixture of Beta's is
also straightforward. For instance, in order to generate θ ~

Table 6: Summary of susceptibility intervals for the pharmacogenetic example. AF, AB, EB refer to the 95% asymptotic frequentist, 
approximate Bayesian, and exact Bayesian intervals.

AF AB EB

 = 0
0.187–0.624 0.180–0.584 0.203–0.648

 > 0
0.183–0.631 0.175–0.591 0.195–0.653
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, we can apply the following two-stage

sampling:

1. Sample J = j ∈ {1,..., k} with probability , i.e., Pr [J =

j] = .

2. Conditional on the sampled value of J = j, sample

This generates a sample from the mixture

. Thus, our sampling scheme described

in "Exact Bayesian Interval" section can be easily modified
to sampling from mixture of Beta's instead.

Power and sample size
Under the hypothesis of equality of genotype frequencies

in cases and controls, H0 : Pr(AA | ) = Pr(AA | ), the
expected susceptibility in (1) is equal to the population
prevalence, w. Correspondingly, the logit transformation

η has the mean equal to , and

The two-sided alternative hypothesis is HA : Pr(AA | ) ≠

Pr(AA | ). The values of Pr(AA | ), Pr(AA | ) and

the ratio  under the alternative are denoted as

pA, qA, and ∆A, respectively. Once these values are speci-
fied, we can calculate the power of detecting the difference
of the susceptibility from the population prevalence as
well as the sample size required to achieve the required
power under an acceptable type I error rate. We will illus-
trate the sample size calculation assuming the equal
number of cases and controls (m = n). Power calculation
given the fixed sample size is obtained similarly. We have

where

is the non-centrality parameter corresponding to 1 - β
power under a two-sided level-α test. Therefore, the neces-
sary sample size is

Estimating parameters of the Beta distribution for the 
prevalence from the range of reported values
Suppose the range of the prevalence values, wl - wu, is
reported. We would like to model the uncertainty with a
bell-shaped Beta(ψ1 > 1, ψ2 > 1) distribution, such that a
certain percentage of the distribution (e.g. 99%) is
between wl and wu with the expected value given by wl +
(wu - wl)/2. The parameters of this distribution can be
found as the solution for ψ1 of

where  denotes
the density of a Beta(ψ1, ψ2) distribution and

 is the Beta function.

The second parameter for b(·) in (28) is given by the con-
straint that the expectation for w is ψ1/(ψ1 + ψ2).

As a sample calculation, consider an antiretroviral drug
abacavir for which the hyper-sensitivity reaction range is
reported as wl = 0.03 to wu = 0.06 [16], so that we can take

 = wl + (wu - wl)/2 = 0.045. If we assume that these
bounds cover 99% of the prevalence distribution that
results from sampling errors in estimation, possibly
confounded with other factors such as genuine popula-
tion heterogeneity of samples, then the resulting distribu-
tion reflecting the uncertainty in w is Beta(57.8572,
1227.86), using (28).

Much more simply calculated parameter estimates can be
obtained by the normal approximation to the beta distri-

bution. Let  = wl + (wu - wl)/2 and approximate the vari-
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ance by  = [(wu - wl)/6]2. By the method of moments,
estimates of the parameters (ψ1, ψ2) are

For the abacavir example, these estimates are found as 

= 77.31 and  = 1640.69. Using these estimates, 99.7%
of the resulting Beta(77.31, 1640.69) distribution is con-
tained within the range 0.03 - 0.06. Thus, the normal
approximation yields a somewhat more condensed
distribution.

Authors' contributions
All authors made substantial contributions to this paper,
including conceiving of the ideas, discussion and writing.
All authors read and approved the final manuscript.

Acknowledgements
Clive Bowman and three anonymous reviewers provided valuable com-
ments that improved the manuscript.

References
1. Altham P: Exact Bayesian analysis of a 2 × 2 contingency table,

and Fisher's "exact" significance test. J of the Royal Statistical Soci-
ety, Series B 1969, 31:261-269.

2. Datta GS, Mukerjee R: Probability matching priors: higher order
asymptotics Lecture Notes in Statistics. Springer Verlag; 2004. 

3. Katz D, Baptista J, Azen SP, Pike MC: Obtaining confidence inter-
vals for the risk ratio in cohort studies. Biometrics 1978,
34:469-474.

4. Koopman PAR: Confidence intervals for the ratio of two bino-
mial proportions. Biometrics 1984, 40:513-517.

5. Pepe MS: The statistical evaluation of medical tests for classification and
prediction Oxford University Press; 2003. 

6. Browne RH: Using the sample range as a basis for calculating
sample size in power calculations. Am Statist 2001, 55:293-298.

7. Haldane JBS: The estimation and significance of the logarithm
of a ratio of frequencies. Ann Human Genet 1955, 20:309-311.

8. Gart JJ, Zweiful JR: On the bias of various estimators of the logit
and its variance with applications to quantal bioassay.
Biometrika 1967, 54:181-187.

9. Agresti A: On logit confidence intervals for the odds ratio with
small samples. Biometrics 1999, 55:597-602.

10. Wright S: The genetical structure of populations. Ann Eugen
1951, 15:32-354.

11. Geisser S: On prior distributions for binary trials. The American
Statistician 1984, 38:244-247.

12. Welch BL, Peers HW: On formulae for confidence points based
on integrals of weighted likelihoods. J of the Royal Stat Soc (B)
1963, 25:318-329.

13. Nielsen DM, Ehm MG, Weir BS: Detecting marker-disease asso-
ciation by testing for Hardy-Weinberg disequilibrium at a
marker locus. Am J Human Genet 1999, 63:1531-1540.

14. Weir BS: Genetic data analysis II Sinauer, Sunderland MA; 1996. 
15. Meng Z, Zaykin DV, Xu C-F, Wagner M, Ehm MG: Selection of

genetic markers for association analyses, using linkage dise-
quilibrium and haplotypes. Am J Human Genet 2003, 73:115-130.

16. Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL,
Spreen W, Lai E, Davies K, Handley A, Dow DJ, Fling ME, Stocum M,
Bowman C, Thurmond LM, Roses AD: Genetic variations in HLA-
B region and hypersensitivity reactions to aba-cavir. Lancet
2002, 359:1121-1122.

17. Dalai SR, Hall WJ: Approximating priors by mixtures of natural
conjugate priors. J of the Royal Stat Soc (B) 1983, 45:278-286.σ̂ 2

ˆ ˆ ( ˆ )/ ˆ

ˆ ( ˆ ) ( ˆ )/ ˆ ( )

ψ σ

ψ σ

1
2

2
2

1 1

1 1 1 29

= − −





= − − −





w w

w w

ψ̂1

ψ̂2
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1198/000313001753272420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1198/000313001753272420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6049534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6049534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1111/j.0006-341X.1999.00597.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1111/j.0006-341X.1999.00597.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11318220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1086/302114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1086/302114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1086/302114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1086/376561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1086/376561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1086/376561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0140-6736(02)08158-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0140-6736(02)08158-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11943262
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Susceptibility intervals
	Classical interval
	Approximate Bayesian interval
	Exact Bayesian interval
	Interval estimation of allele or haplotype susceptibilities
	Table 1

	Coverage probabilities
	Table 2
	Table 3
	Table 4
	Table 5

	Pharmacogenetic application
	Table 6


	Discussion
	Conclusions
	Methods
	Posterior sampling using the mixture of beta distributions
	Power and sample size
	Estimating parameters of the Beta distribution for the prevalence from the range of reported values

	Authors' contributions
	Acknowledgements
	References

